

Architecture-Based and Uncertainty-Aware Confidentiality Analysis – The (very) short version

Dr.-Ing. Sebastian Hahner

CyberSec Seminar, April 8th, 2025

Karlsruhe Institute of Technology

Architecture?

Architecture-Based and Uncertainty-Aware Confidentiality Analysis

2025-04-08

Architecture and Confidentiality Violations?

Architecture-Based and Uncertainty-Aware Confidentiality Analysis

[1]

Data Breaches, Cyber Attacks and Confidentiality

Karlsruhe Institute of Technology

TECHNOLOGY | CYBERSECURITY

What's Behind the Increase in Data Breaches?

One reason: Ransomware gangs are on the rise, allowing even criminals with minimal computer knowledge to get into the game

Russia accused of EU and Nato cyberattacks

9 September 2024

Massive data leak exposes 700 million
Liticketmaster confirms data breach
IMPACTING 560 MILLION CUSTOMERS

Pierluigi Paganini © June 01, 2024

Chat app Knuddels fined €20,000 for GDPR breach

Luke Irwin 🛗 29th November 2018

Confidentiality: "property that information is not made available or disclosed to unauthorized individuals, entities, or processes" [6]

- [1] Wall Street Journal, https://www.wsj.com/tech/cybersecurity/why-are-cybersecurity-data-breaches-still-rising-2f08866c, 2024 (last checked: 03.12.24)
- [2] FORTUNE, https://fortune.com/2021/06/30/linkedin-data-theft-700-million-users-personal-information-cybersecurity, 2021(last checked: 03.12.24)
- [3] Security Affairs, https://securityaffairs.com/163999/data-breach/ticketmaster-confirms-data-breach.html, 2024 (last checked: 03.12.24)
- [4] BBC, https://www.bbc.com/news/articles/c984zenjkz5o, 2024 (last checked: 03.12.24)
- [5] IT Governance, https://www.itgovernance.eu/blog/en/chat-app-knuddels-fined-e20000-for-gdpr-breach, 2018 (last checked: 03.12.24)
- [6] ISO/IEC 27000:2018(E) Information technology Security techniques Information security management systems Overview and vocabulary, 2018.

[5]

Software Architecture Analysis under Uncertainty

^[7] S. Seifermann, et al.. "Detecting violations of access control and information flow policies in data flow diagrams", JSS, vol. 184, Elsevier, 2022.

^[8] D. Garlan, "Software engineering in an uncertain world", FoSER, ACM, 2010.

^[9] S. McConnell, "Software project survival guide", Microsoft Press, 1998.

^[6] ISO/IEC 27000:2018(E) Information technology - Security techniques - Information security management systems - Overview and vocabulary, 2018.

Challenges of Confidentiality and Uncertainty

Challenge 1

Challenge 2

Understanding, describing, and classifying uncertainty

Confidentiality Requirement: Protect personal user data.

Challenge 3

Predicting the impact of uncertainty

Challenge 4

Identifying confidentiality violations due to uncertainty

Gap: lack of means to identify, describe, and analyze uncertainty regarding confidentiality at design time

[10] S. M. Hezavehi, et al., "Uncertainty in Self-adaptive Systems: A Research Community Perspective," ACM TAAS., vol. 15, no. 4, 2021.

Enabling Architectural Confidentiality Analysis

[11] Robert Koch Institute, Open-source Corona Warn App, documentation available online: https://github.com/corona-warn-app

[12] S. Hahner, et al., "Architecture-Based Uncertainty Impact Analysis to Ensure Confidentiality", SEAMS, IEEE/ACM, 2023.

2025-04-08

Security be like...

but not without high recall.

⇒ Architecture-Based and Uncertainty-Aware Confidentiality Analysis

Uncertainty Management at Design Time [10,13]

[10] S. M. Hezavehi, et al., "Uncertainty in Self-adaptive Systems: A Research Community Perspective," ACM TAAS., vol. 15, no. 4, 2021.

[13] D. Weyns, ..., S. Hahner, et al., "Towards a Research Agenda for Understanding and Managing Uncertainty in Self-Adaptive Systems," ACM SIGSOFT SEN, vol. 48, no. 4, 2023.

2025-04-08

Karlsruhe Institute of Technology

Contribution Overview

Identification and Classification of Uncertainty w.r.t. Confidentiality [ECSA-C 2021] [ACM MODELS-C 2022] [Springer ICETE 2023] [ACM/IEEE MODELS-C 2024]

C1

Architecture-Based Uncertainty Propagation and Impact Analysis

C2

[IEEE/ACM SEAMS 2023] [IEEE/ACM SEAMS 2024]

Uncertainty-Aware Confidentiality Analysis

C3

[IEEE SEAA 2022] [Springer ECSA 2022] [IEEE ICSA-C 2023] [Springer ECSA 2024]

Uncertainty Impact Analysis

[14] S. Hahner, et al., "A Classification of Software-Architectural Uncertainty Regarding Confidentiality", ICETE, Springer, 2023. [15] N. Boltz and S. Hahner, et al., "An Extensible Framework for Architecture-Based Data Flow Analysis for Information Security", ECSA, Springer, 2024.

Uncertainty Impact Analysis

[14] S. Hahner, et al., "A Classification of Software-Architectural Uncertainty Regarding Confidentiality", ICETE, Springer, 2023.

[15] N. Boltz and S. Hahner, et al., "An Extensible Framework for Architecture-Based Data Flow Analysis for Information Security", ECSA, Springer, 2024.

C2

Uncertainty Impact Analysis

What do we have?

- Classified uncertainty sources [14]
- Mapping to data flow diagrams [15]

What do we want?

- Propagating uncertainty sources
- Assessing the uncertainties' impact

How do we get there?

- Change impact analysis [16]
- Data flow-based propagation [7]

^[14] S. Hahner, et al., "A Classification of Software-Architectural Uncertainty Regarding Confidentiality", ICETE, Springer, 2023.

^[15] N. Boltz and S. Hahner, et al., "An Extensible Framework for Architecture-Based Data Flow Analysis for Information Security", ECSA, Springer, 2024.

^[16] K. Rostami, et al. "Architecture-Based Change Impact Analysis in Information Systems and Business Processes", ICSA, IEEE, 2017.

^[7] S. Seifermann, et al., "Detecting violations of access control and information flow policies in data flow diagrams", JSS, vol. 184, Elsevier, 2022.

[17] R. Reussner et al., "Modeling and Simulating Software Architectures: The Palladio Approach", The MIT Press, 2016.

Architectural Uncertainty Propagation

Architectural Uncertainty Propagation

Algorithm for External Uncertainty Propagation

```
procedure PROPAGATEEXTERNALUNCERTAINTY(uncertainty, model)
      result ← Ø
      annotatedElement ← GETANNOTATEDELEMENT(uncertainty, model)
     switch TYPEOF(annotatedElement) do
        case UsageScenario
          actions ← GETACTIONS(annotatedElement, model)
          for action ∈ actions do
             if TYPEOF(action) = EntryLevelSystemCall then
               result ← result ∪ {action}
10:
             end if
11:
          end for
12:
        case ResourceContainer
13:
          allAssemblyContexts ← GETALLASSEMBLYCONTEXTS(model)
14:
          for context ∈ allAssemblyContexts do
             if GETALLOCATION(context, model) = annotatedElement then
15:
16:
               component ← GETREPOSITORYCOMPONENT(context, model)
17:
               seffs ← GETSEFFs(component, model)
18:
               for seff \in seffs do
19:
                 actions ← GETACTIONS(seff, model)
                 result ← result ∪ APPLYTOASSEMBLY(actions, context)
21:
               end for
            end if
23:
          end for
     return result
25: end procedure
```


C2

Uncertainty Impact Analysis

What do we have?

- Classified uncertainty sources [14]
- Mapping to data flow diagrams [15]

What do we want?

- **Propagating** uncertainty sources
- Assessing the uncertainties' impact

How do we get there?

- Change impact analysis [16]
- Data flow-based propagation [7]

^[14] S. Hahner, et al., "A Classification of Software-Architectural Uncertainty Regarding Confidentiality", ICETE, Springer, 2023.

^[15] N. Boltz and S. Hahner, et al., "An Extensible Framework for Architecture-Based Data Flow Analysis for Information Security", ECSA, Springer, 2024.

^[16] K. Rostami, et al. "Architecture-Based Change Impact Analysis in Information Systems and Business Processes", ICSA, IEEE, 2017.

^[7] S. Seifermann, et al., "Detecting violations of access control and information flow policies in data flow diagrams", JSS, vol. 184, Elsevier, 2022.

Data Flow-Based Propagation

- Data flow diagrams can be represented as Directed Acyclic Graph (DAG) G = (V, E)
 - Data flows in a strict partial order v' < v"</p>
 - Split into Transpose Flow Graphs (TFGs)

TRANSFORMED DATA FLOW DIAGRAM (DFD)

Data Flow-Based Propagation

- Data flow diagrams can be represented as Directed Acyclic Graph (DAG) G = (V, E)
 - Data flows in a strict partial order v' < v"</p>
 - Split into Transpose Flow Graphs (TFGs)
- We reuse the annotation function a, the architectural propagation p_A , and the mapping m from the architecture A
- The data flow-based propagation p_D : $V \rightarrow X \subseteq V$ yields an impact set, represented by an induced subgraph G[X]
- Uncertainty impacts follow the data flow: $\forall x \in X \subseteq V, \exists a \in A : m(a) = x \lor m(a) \prec x$
- The impact analysis of an uncertainty source S is a function $u: S \rightarrow X \subseteq V$, defined as $\mathbf{u} = \mathbf{p}_{D} \cdot \mathbf{m} \cdot \mathbf{p}_{\Delta} \cdot \mathbf{a}$

Demonstration of Uncertainty Impact Sets

Conclusion

- **Foundation:** Data flow-based confidentiality analysis using the software's architecture
- Goal: Enabling to identify confidentiality violations with respect to uncertainty
- Benefits: Less expertise and less manual effort required, what-if analysis capabilities

Contributions:

- C1: Identification and classification of uncertainty regarding confidentiality
- **C2**: Architecture-based uncertainty propagation and impact analysis
- C3: Uncertainty-aware confidentiality analysis to identify violations

