

Architecture-based Propagation Analyses Regarding Security

GI Software Engineering 2024 – SE'24 – 29. February 2024

Sebastian Hahner, Maximilian Walter, Robert Heinrich, Ralf Reussner

www.kit.edu

- Software security issues are wide-ranging [1] and increasingly common [2]
- Many issues can be detected by analyzing the software's architecture

Examples

- Access control and vulnerability analysis [3]
- Attack path detection and propagation
- Data flow-based confidentiality analysis [4]
- Uncertainty propagation w.r.t. confidentiality

[1] OWASP, "Top Ten Web Application Security Risks", https://owasp.org/, 2021.

[2] UK Department for Digital, Culture, Media and Sport, "Cyber Security Breaches Survey", 2021.

[3] M. Walter, R. Heinrich, and R. Reussner, "Architectural Attack Propagation Analysis for Identifying Confidentiality Issues", In: *IEEE ICSA*, 2022.
 [4] S. Seifermann, et al., "Detecting violations of access control and information flow policies in data flow diagrams", In: *JSS*, vol. 184, 2022.

[5] Robert Koch Institute, Open-source Corona Warn App, documentation available online: https://github.com/corona-warn-app

3 29 February 2024 <u>S. Hahner</u>, M. Walter, R. Heinrich, R. Reussner – Architecture-based Propagation Analyses Regarding Security

Overview

CVE-2021-28374

Storage Server

Attack Path Detection

Termina

Server

Machine

Controller

- Generating attack paths from software architectural models, access control policies and known vulnerabilities
- Detecting and filtering attack paths
- ➡ M. Walter et al., "Architecture-Based Attack Path Analysis for Identifying Potential Security Incidents", ECSA, Springer, 2023.

- Estimates the impact of uncertainty sources on a system's confidentiality
- Architecture-based and data flowbased propagation of uncertainty
- S. Hahner et al., "Architecture-Based Uncertainty Impact Analysis to Ensure Confidentiality", SEAMS, IEEE/ACM, 2023.

Overview

CVE-2021-28374

Storage Server

Terminal

Server

Machine

Controller

- Generating attack paths from software architectural models, access control policies and known vulnerabilities
- Detecting and filtering attack paths
- ⇒ M. Walter et al., "Architecture-Based Attack Path Analysis for Identifying Potential Security Incidents", ECSA, Springer, 2023.

- Estimates the impact of uncertainty sources on a system's confidentiality
- Architecture-based and data flowbased propagation of uncertainty
- ⇒ S. Hahner et al., "Architecture-Based Uncertainty Impact Analysis to Ensure Confidentiality", SEAMS, IEEE/ACM, 2023.

Introduction \triangleright Attack Path Detection \triangleright Uncertainty Impact Analysis \triangleright Related Work \triangleright Conclusion

Attack Path Detection – Motivation

6 29 February 2024 <u>S. Hahner</u>, M. Walter, R. Heinrich, R. Reussner – Architecture-based Propagation Analyses Regarding Security

Modeling of Access Control and Vulnerabilities

Access Control

- Based on the XACML [6]
- OASIS industry standard for attributebased access control
- Benefits: Well-known and documented

H Vulnerabilities

- Reuse existing classification of vulnerabilities and their impact [7]
- Adapt attacker capabilities, e.g., gained access control attributes

₩CVE-2021-28374 Detail

Description

The Debian courier-authlib package before 0.71.1-2 for Courier Authentication Library creates a /run/courier/authdaemon directory with weak permissions, allowing an attacker to read user information. This may include a cleartext password in some configurations. In general, it includes the user's existence, uid and gids, home and/or Maildir directory, quota, and some type of password information (such as a hash).

Severity CVSS Version 3.x CVSS Version 2.0		
CVSS 3.x Severity and Metrics:		
	rctor: /SS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N	I
NVD Analysts use publicly available information to associate vector string information provided within the CVE List from the CNA. Note: NVD Analysts have published a CVSS score for this CVE based on pul The CNA has not provided a score within the CVE List.	Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N Impact Score: 3.6 Evoloitability Score: 3.9	
	Attack Complexity (AC): Low	
References to Advisories, Solution	Privileges Required (PR): None User Interaction (UI): None Scope (S): Unchanged	
By selecting these links, you will be leaving NIST webspace. We h they may have information that would be of interest to you. No in being referenced, or not, from this page. There may be other web	Integrity (I): None Availability (A): None	ecause er sites pose.

[6] OASIS, "eXtensible Access Control Markup Language (XACML)", see: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html [7] "Common Vulnerabilities and Exposures" and "Common Weakness Enumeration", see: https://www.cve.org/ or https://nvd.nist.gov/

Attack Path Creation

8

- Create multi label graph, derived from the software architecture
- Nodes are architectural elements
- Edges are possibilities to compromise
- Use Filters to remove edges, e.g.,
 - Specific vulnerabilities
 - Start element
 - Maximum path length
 - Attacker capabilities
 - Initial credentials

Attack Graph – Without Filter

Attack Graph – With Vulnerability Filter

1029 February 2024S. Hahner, M. Walter, R. Heinrich, R. Reussner –
Architecture-based Propagation Analyses Regarding Security

Attack Path Identification

29 February 2024 <u>S. Hahner</u>, M. Walter, R. Heinrich, R. Reussner – Architecture-based Propagation Analyses Regarding Security

11

Accuracy Evaluation

Design

- Goal: Investigate how well attack path identifications works
- 5 scenarios with 52 attack paths, including real-world breaches and evaluation cases
- Metrics: Precision, Recall, F1-score

Results

- High identification rate
- Missing attack paths due to tradeoff between accuracy/scalability

Overview

Attack Path Detection

- Generating attack paths from software architectural models, access control policies and known vulnerabilities
- Detecting and filtering attack paths
- ➡ M. Walter et al., "Architecture-Based Attack Path Analysis for Identifying Potential Security Incidents", ECSA, Springer, 2023.

- Estimates the impact of uncertainty sources on a system's confidentiality
- Architecture-based and data flowbased propagation of uncertainty
- ⇒ S. Hahner et al., "Architecture-Based Uncertainty Impact Analysis to Ensure Confidentiality", SEAMS, IEEE/ACM, 2023.

Overview

CVE-2021-28374

Storage Server

Attack Path Detection

Terminal

Server

Machine

Controller

Generating attack paths from software architectural models, access control policies and known vulnerabilities

Detecting and filtering attack paths

⇒ M. Walter et al., "Architecture-Based Attack Path Analysis for Identifying Potential Security Incidents", ECSA, Springer, 2023.

- Estimates the impact of uncertainty sources on a system's confidentiality
- Architecture-based and data flowbased propagation of uncertainty
- S. Hahner et al., "Architecture-Based Uncertainty Impact Analysis to Ensure Confidentiality", SEAMS, IEEE/ACM, 2023.

Uncertainty Impact Analysis – Motivation

- Uncertainty has an impact on a software system's confidentiality
 - Uncertainty sources exist in the system and its environment [8]
 - Design time analysis can find confidentiality violations [9, 10]

Challenges

- Uncertainty source and impact location in the system can differ
- Lack of comprehensive and precise modeling and analysis

[8] M. Acosta et al., "Uncertainty in coupled models of cyber-physical systems", In: MODELS-C, ACM, 2022.
[9] S. Seifermann, et al., "Detecting violations of access control and information flow policies in data flow diagrams", In: *JSS*, vol. 184, 2022.
[10] S. Hahner, et al., "Model-based Confidentiality Analysis under Uncertainty", In: ICSA-C, IEEE, 2023.

 15
 29 February 2024
 S. Hahner, M. Walter, R. Heinrich, R. Reussner – Architecture-based Propagation Analyses Regarding Security

Impact Analysis Algorithm

- 1) Annotate the uncertainty source
- 2) Calculate structural propagation based on change impact analysis [11]
- 3) Map all impacts to the data flow diagram [9]
- 4) Calculate the propagation along all affected data flows
- 5) Calculate the impact set by finding the maximum discontiguous data flows

$$\max_{D}(\{23\mathbb{B},\{3\mathbb{B},45\},$$

S. Hahner, M. Walter, R. Heinrich, R. Reussner -29 February 2024 16 Architecture-based Propagation Analyses Regarding Security

KASTEL – Institute of Information Security and Dependability DSiS – Dependability of Software-intensive Systems group

Uncertainty Impact Analysis on Confidentiality

Formal Foundation of Impact Analysis

- Data flow diagrams can be represented as DAG G = (V, E) with a strict partial order u < v</p>
- We reuse the mapping m(a) from the architecture A to data flow nodes
- The impact analysis of an uncertainty source S is a function $u : S \rightarrow X \subseteq V$
- The impact set is represented by an induced subgraph G[X]
- Uncertainty impacts follow the data flow: ∀ x ∈ X ⊆ V, ∃ a ∈ A : m(a) ≺ x

Case Study-based Evaluation

Goal Question Metric Plan

- Accuracy: How precise and complete are the calculated impact sets?
- Effort reduction: How many model elements must be considered in the analysis?

Case Study

- Corona Warn App, 19 components, 200 data flow diagram nodes
- 4 evaluation scenarios, comparing to confidentiality analysis [9]

Results

- High F₁ score of 0.94, analysis optimized for recall R of 1.0 without false negatives
- Impact set ratio r_i of 0.18 has slight overestimation of affected set ratio r_a of 0.16

[9] S. Seifermann, et al., "Detecting violations of access control and information flow policies in data flow diagrams", In: JSS, vol. 184, 2022.

 18
 29 February 2024
 S. Hahner, M. Walter, R. Heinrich, R. Reussner – Architecture-based Propagation Analyses Regarding Security

	S1	S2	S3	S4	AVG		
Precision P	0.838	1.000	0.840	0.882	0.890		
Recall R	1.000	1.000	1.000	1.000	1.000		
F ₁ score	0.912	1.000	0.913	0.938	0.942		
Ratio r _a	0.155	0.080	0.105	0.300	0.160		
Ratio r _i	0.185	0.080	0.125	0.340	0.183		

Related Work

Attack Path Detection

- Policy analysis [12], model-driven confidentiality analysis [9, 13], and attacker modelling and analysis [14]
- ⇒ Related approaches lack either fine-grained policy or attack models

Uncertainty Impact Analysis

- Architecture-based uncertainty analyses [15, 16, 17], and uncertaintyaware confidentiality analysis [18]
- ⇒ Related approaches lack either precision or comprehensiveness

[9] S. Seifermann, et al., "Detecting violations of access control and information flow policies in data flow diagrams", In: JSS, vol. 184, 2022.
[12] K. Fisler, et al., "Verification and change-impact analysis of access-control policies", In: ICSE, IEEE, 2005.
[13] J. Jürjens, "UMLsec: Extending UML for Secure Systems Development", In: UML, Springer 2002.
[14] M. Aksu, "Automated Generation of Attack Graphs Using NVD", In: CODASPY, ACM, 2018.
[15] N. Esfahani, et al., "GuideArch: Guiding the exploration of architectural solution space under uncertainty", In: ICSE, IEEE, 2013.
[16] I. Lytra and U. Zdun, "Supporting architectural decision making for systems-of-systems design under uncertainty", In: SESoS, ACM, 2013.
[17] A. Koziolek, et al., "PerOpteryx: Automated application of tactics in multi-objective software architecture optimization", In: QoSA-ISARCS, ACM, 2011.
[18] N. Boltz, et al., "Handling environmental uncertainty in design time access control analysis", In: SEAA, IEEE, 2022.

 19
 29 February 2024
 S. Hahner, M. Walter, R. Heinrich, R. Reussner – Architecture-based Propagation Analyses Regarding Security

Conclusion

- Software architecture-based analyses can help in identifying security issues
- These analyses propagate information on intermediate representations like attack graphs or data flow diagrams
- Attack Path Detection [A] generates attack paths to analyze vulnerabilities

Uncertainty Impact Analysis [B] propagates uncertainty to predict its impact on the system's confidentiality

Uncertainty Flow Diagrams [19], using uncertainty propagation for interactions

[A] M. Walter, R. Heinrich, and R. Reussner, "Architecture-Based Attack Path Analysis for Identifying Potential Security Incidents". In: ECSA. Springer, 2023. [B] S. Hahner, R. Heinrich, and R. Reussner, "Architecture-Based Uncertainty Impact Analysis to Ensure Confidentiality", In: SEAMS, IEEE/ACM, 2023. [19] J. Cámara, S. Hahner, D. Perez-Palacin, A. Vallecillo, M. Acosta, N. Bencomo, R. Calinescu, S. Gerasimou, "Uncertainty Flow Diagrams: Towards a Systematic Representation of Uncertainty Propagation and Interaction in Adaptive Systems", In: SEAMS, IEEE/ACM, 2024, accepted, to appear.

S. Hahner, M. Walter, R. Heinrich, R. Reussner -Architecture-based Propagation Analyses Regarding Security

